Electrically driven flow near a colloidal particle close to an electrode with a Faradaic current.
نویسندگان
چکیده
To elucidate the nature of processes involved in electrically driven particle aggregation in steady fields, flows near a charged spherical colloidal particle next to an electrode were studied. Electrical body forces in diffuse layers near the electrode and the particle surface drive an axisymmetric flow with two components. One is electroosmotic flow (EOF) driven by the action of the applied field on the equilibrium diffuse charge layer near the particle. The other is electrohydrodynamic (EHD) flow arising from the action of the applied field on charge induced in the electrode polarization layer. The EOF component is proportional to the current density and the particle surface (zeta) potential, whereas our scaling analysis shows that the EHD component scales as the product of the current density and applied potential. Under certain conditions, both flows are directed toward the particle, and a superposition of flows from two nearby particles provides a mechanism for aggregation. Analytical calculations of the two flow fields in the limits of infinitesimal double layers and slowly varying current indicate that the EOF and EHD flow are of comparable magnitude near the particle whereas in the far field the EHD flow along the electrode is predominant. Moreover, the dependence of EHD flow on the applied potential provides a possible explanation for the increased variability in aggregation velocities observed at higher field strengths.
منابع مشابه
Electrohydrodynamic flow around a colloidal particle near an electrode with an oscillating potential
Electrohydrodynamic (EHD) flow around a charged spherical colloid near an electrode was studied theoretically and experimentally to understand the nature of longrange particle–particle attraction near electrodes. Numerical computations for finite double-layer thicknesses confirmed the validity of an asymptotic methodology for thin layers. Then the electric potential around the particle was comp...
متن کاملElectrohydrodynamic flow and colloidal patterning near inhomogeneities on electrodes.
Current density inhomogeneities on electrodes (of physical, chemical, or optical origin) induce long-range electrohydrodynamic fluid motion directed toward the regions of higher current density. Here, we analyze the flow and its implications for the orderly arrangement of colloidal particles as effected by this flow on patterned electrodes. A scaling analysis indicates that the flow velocity is...
متن کاملRobust Fractional-order Control of Flexible-Joint Electrically Driven Robots
This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...
متن کاملElectrolyte-Dependent Aggregation of Colloidal Particles near Electrodes in Oscillatory Electric Fields.
Colloidal particles adjacent to electrodes have been observed to exhibit drastically different aggregation behavior depending on the identity of the suspending electrolyte. For example, particles suspended in potassium chloride aggregate laterally near the electrode upon application of a low-frequency (∼100 Hz) oscillatory electric field, but the same particles suspended in potassium hydroxide ...
متن کاملRobust Fractional-order Control of Flexible-Joint Electrically Driven Robots
This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 23 7 شماره
صفحات -
تاریخ انتشار 2007